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Abstract

Does a larger fraction of informed trading generate more illiquidity, as measured by

the bid-ask spread? We answer this question in the negative in the context of a dynamic

dealer market where the fundamental value follows a random walk, provided we consider

the long run (stationary) equilibrium. More informed traders tend to generate more

adverse selection and hence larger spreads, but at the same time cause faster learning

by the market makers and hence smaller spreads. These two effects offset each other in

the long run.
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1 Introduction

A traditional view of market liquidity, going at least as far back as Bagehot (1971), posits that

one of the causes of illiquidity is adverse selection: “The essence of market making, viewed

as a business, is that in order for the market maker to survive and prosper, his gains from

liquidity-motivated transactors must exceed his losses to information motivated transactors.

[...] The spread he sets between his bid and asked price affects both: the larger the spread,

the less money he loses to information-motivated, transactors and the more he makes from

liquidity-motivated transactors.”

This intuition has later been made precise by models such as Glosten and Milgrom (1985,

henceforth GM85), in which a competitive risk-neutral dealer sequentially sets bid and ask

prices in a risky asset, and makes zero expected profits in each trading round. Traders are

selected at random from a population that contains a fraction ρ of informed traders, and must

trade at most one unit of the asset. The asset liquidates at a value v that is constant and is

either zero or one. In equilibrium, the bid-ask spread is wider when the informed share ρ is

higher: there is more adverse selection, hence the dealer must set a larger bid-ask spread to

break even.

This intuition, however, must be modified once we consider the dynamics of the bid-ask

spread. A larger informed share also means that orders carry more information, which over

time reduces the uncertainty about v and thus puts downward pressure on the bid-ask spread.

We call this last effect dynamic efficiency. This effect is already present in GM85, who observe

that a larger informed share causes initially a larger bid-ask spread, but also causes the bid-ask

spread to decrease faster to its eventual value, which is zero (when v is fully learned).

A natural question is then: to what extent does dynamic efficiency reduce the traditional

adverse selection? To answer this question, we extend the framework of GM85 to allow v to

move over time according to a random walk vt.
1 To obtain closed-form results, we assume

that the increments of vt are normally distributed with volatility σv, called the fundamental

1In GM85 both types of traders are willing to trade in each period (the informed because v is always
outside the bid-ask spread, the uninformed for exogenous reasons), hence a trader is chosen at random among
the informed and uninformed. When vt is moving, there are times when the informed traders are not willing
to trade (vt is within the spread), hence a trader is chosen at random among the uninformed.
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volatility. We chose a moving value for two reasons. First, this is a realistic assumption in

modern financial markets, where relevant information arrives essentially at a continuous rate.

Second, we want to study the long-term evolution of the bid-ask spreads, and this long-term

analysis is trivial when vt is constant, as the dealer eventually fully learns v. Note that we

are interested in the long run because (as we show later) in the short run the equilibrium is

similar to GM85, but in the long run it converges to the stationary equilibrium, which has

novel properties.

The first property of the stationary equilibrium is that the dealer’s uncertainty about vt is

constant. More precisely, we define the public density at t to be the dealer’s posterior density

of vt just before trading at t. We also define the public mean and public volatility to be,

respectively, the mean and standard deviation of the public density.2 Thus, in a stationary

equilibrium, the public volatility (which is a measure of the dealer’s uncertainty) is constant.

The second property of the stationary equilibrium is that the informed share is inversely

related to the public volatility. The intuition is simple: when the informed share is low, the

order flow carries little information, and thus the public volatility is large.3

A surprising property of the stationary equilibrium is that the informed share has no effect

on the bid-ask spread. To understand this result, consider a small informed share, say 1%.

Suppose a buy order arrives, and the dealer estimates how much to update the public mean (in

equilibrium this update is half of the bid-ask spread). There are two opposite effects. First, it

is very unlikely that the buy order comes from an informed trader (with only 1% chance). This

is the adverse selection effect: a low informed share makes the dealer less concerned about

adverse selection, which leads to a smaller update of the public mean, and hence decreases

the bid-ask spread. But, second, if the buy order does come from an informed trader, a large

public volatility translates into the dealer knowing that, on average, the informed trader must

have observed a value far above the public mean. This is the dynamic efficiency effect: a low

informed share leads to a larger update of the public mean, and hence increases the bid-ask

2To simplify the analysis, we assume here (as in Section 4) that the dealer always considers the public
density to be normal: after observing the order flow at t, the dealer computes correctly the first two moments
of the public density at t+ 1, but not the higher moments, and thus considers the new density to be normal
as well. In Section 5, we show that the main results remain robust with exact learning.

3The existence itself of a stationary limit is not entirely obvious. Indeed, it might be possible for the
public volatility to grow indefinitely, without any finite limit.
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spread. At the other end, a large informed share means that the dealer learns well about the

asset value (the public volatility is small), and therefore the bid-ask spread tends to be small.

It turns out that the two opposite effects exactly offset each other. As explained above, this

translates into the fact that the magnitude of the updates in public mean caused by order flow

is independent of the informed share. This result depends crucially on the equilibrium being

stationary. To understand why, consider an equilibrium which is not necessarily stationary. If

there was no order flow at t, then the dealer’s uncertainty (the public volatility) would increase

from t to t + 1 as the asset value diffuses. But the order flow at t contains information and

hence reduces the uncertainty at t + 1. In a stationary equilibrium the uncertainty increase

caused by diffusion must cancel the uncertainty decrease caused by order flow. Thus, as the

value diffusion is independent of the informed share, the information content of the order

flow must also be independent of the informed share. But this implies that the magnitude of

public mean updates is independent of the informed share.

Our next result is that, for any initial public volatility, the equilibrium converges to the

stationary equilibrium. In particular, consider a wide initial public volatility. Then, as the

order flow starts providing information to the dealer, the public volatility starts decreasing

toward its stationary value. The same is true for the bid-ask spread, which in a non-stationary

equilibrium is always proportional to the public volatility. This phenomenon is similar to the

GM85 equilibrium, except that there the stationary public volatility and bid-ask spread are

both zero. This illustrates the statement made above, that the non-stationary equilibrium (the

“short run”) resembles GM85, while the stationary equilibrium (the “long run”) is different

and produces novel insights.

Studying the equilibrium behavior after various types of shocks provides a few testable

implications. First, consider a positive shock to the informed share (e.g., the stock is now

studied by more hedge funds). Then, the adverse selection effect suddenly becomes stronger,

and as a result the bid-ask spread temporarily increases. In the long run, though, the bid-

ask spread reverts to its stationary value, which does not change. At the same time, the

public volatility gradually decreases to its new level, which is lower due to the increase in the

informed share. Second, consider a negative shock to the current public volatility (e.g., public
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news about the current asset value). Then, the bid-ask spread follows the public volatility

and drops immediately, after which it increases gradually to its old stationary level. Third,

consider a positive shock to the fundamental volatility (e.g., all future uncertainty about the

asset increases). Then, the bid-ask spread follows the public volatility and increases gradually

to its new stationary level.

Based on our results, the picture on dynamic adverse selection that emerges is that liq-

uidity is more strongly affected not by the informed share (the intensive margin), but by the

fundamental volatility (the extensive margin). By contrast, price discovery (measured by the

public volatility) is strongly affected by both informed share and fundamental volatility. This

suggests that the presence of privately informed traders can be more precisely identified by

proxies of the current level of uncertainty, rather than by illiquidity measures such as the

bid-ask spread (which is used by Collin-Dufresne and Fos, 2015).

A surprising outcome of our theory is that a lower level of uncertainty (lower public

volatility) can occur if either the informed share becomes larger (more privately informed

traders arrive), or more precise public news arrives.4 We can disentangle the two scenarios,

however, by examining the effect on the bid-ask spread: more precise public news should

reduce it, while a larger informed share should have no effect.

Our paper contributes to the literature of dynamic models of adverse selection.5 To our

knowledge, this paper is the first to study the effect of stationarity in dealer models of the

Glosten and Milgrom (1985) type.6 By contrast, several stationary models of the Kyle (1985)

type are analyzed for instance by Chau and Vayanos (2008) and Caldentey and Stacchetti

(2010). The focus of these models, however, is not liquidity but price discovery: it turns out

that in the limit the market in this models becomes strong-form efficient, as the insider trades

very aggressively.

The paper speaks to the literature on the identification of informed trading and in par-

ticular on the identification of insider trading. Collin-Dufresne and Fos (2015, 2016) show

4In Section 6.2 we solve a simple extension of our model with public news, and show that more precise
public news translates into a lower public volatility.

5See for instance the survey of Foucault, Pagano, and Röell (2013) and the references therein.
6Glosten and Putnins (2016) study the welfare effect of the informed share in the Glosten and Milgrom

(1985) model, but they do not consider the effect of stationarity.
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both empirically and theoretically that times when insiders trade coincide with times when

liquidity is actually stronger (and in particular bid-ask spreads decline). They attribute this

finding to the action of discretionary insiders who trade when they expect a larger presence

of liquidity (noise) traders. During those times the usual positive effect of noise traders on

liquidity dominates, and thus bid-ask spreads decline despite there being more informed trad-

ing. By contrast, our effect works even when the noise trader activity is constant over time,

as long as there is enough time for the equilibrium to become stationary.

The paper is organized as follows. Section 2 describes the model (in which the value

follows a random walk). Section 3 shows how to compute the equilibrium when the dealer

is fully Bayesian. Section 4 studies in detail the model in which the dealer is approximately

Bayesian, and describes the stationary and non-stationary equilibria. Section 5 verifies how

well the approximate equilibrium approaches the exact equilibrium. Section 7 concludes. All

proofs are in the Appendix. The Internet Appendix contains a discussion of general dealer

models, and an application to a model in which the fundamental value switches randomly

between zero and one.

2 Environment

The model is similar to GM85, except that the fundamental value moves according to a

random walk:

vt+1 = vt + εt+1, with εt
IID∼ N (·, 0, σv) . (1)

There is a single risky asset, and time is discrete and infinite. Trading in the risky asset is

done on an exchange, where before each time t = 0, 1, 2, . . . a dealer posts two quotes: the ask

price (or simply ask) At, and the bid price (or simply bid) Bt. Thus, a buy order at t executes

at At, while a sell order at t executes at Bt. The dealer (referred to in the paper as “she”) is

risk neutral and competitive, and therefore makes zero expected profits from each trade.

The buy or sell orders are submitted by a trading population with a fraction ρ ∈ (0, 1) of

informed traders and a fraction 1− ρ of uninformed traders. At each t = 0, 1, . . . a trader is

selected at random from the population willing to trade, and can trade at most one unit of
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the asset. An uninformed trader at t is always willing to trade, and is equally likely to buy

or to sell.7 An informed trader at t who observes the value vt either (i) submits a buy order

if vt > At, (ii) submits a sell order if vt < Bt, (iii) is not willing to trade if vt ∈ [Bt, At]. If

case (iii) occurs, an uninformed trader is selected, as no informed trader is willing to trade.

The dealer’s uncertainty about the fundamental value is summarized by the public density,

which is the density of vt just before trading at t, conditional on all the order flow available

at t, that is, the sequence of orders submitted at times 0, 1, . . . , t−1. Denote by φt the public

density, by µt its mean (called the public mean) and by σt its standard deviation (called the

public volatility). The initial density φ0 is assumed to be rapidly decaying at infinity.8 In

the rest of the paper, by “density” we typically include the requirement that the density be

rapidly decaying. To avoid cumbersome language, we make this requirement explicit only

when we state the formal results.

3 Equilibrium

We prove the existence of an equilibrium of the model in two steps. First, for each t =

0, 1, 2, . . . we start with an public density φt, an ask At, a bid Bt < At, and compute the

public density φt+1 after a buy or sell order. Second, for any public density φt we show that

there exists an ask-bid pair (At, Bt), meaning that the ask At and the bid Bt satisfy the

dealer’s pricing conditions which require that her expected profit from trading at t is zero.

The ask-bid pair (At, Bt) is not necessarily unique, and we choose the pair with the ask closest

to the public mean.

7A standard way to endogenize this assumption is to introduce relative private valuations for the unin-
formed traders. For instance, if a trader expects the value to be µt and has a relative private valuation larger
than At − µt (which in equilibrium is half the bid-ask spread), the trader is always willing to buy at At.

8A function f is rapidly decaying (at infinity) if it is smooth and satisfies limv→±∞ |v|Mf (N)
0 (v) = 0, where

f (N) is the N -th derivative of f . The space S of rapidly decaying functions is called the Schwartz space. Any
normal density belongs to S, and the convolution of two densities in S also belongs to S.
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3.1 Evolution of the Public Density

Let φt be the public density of vt before trading at t, and let At > Bt be, respectively, the ask

and bid at t (not necessarily satisfying the dealer’s pricing conditions). Suppose a buy or sell

order Ot ∈ {B, S} arrives at t. Let 1P be the indicator function, which is one if P is true and

zero if P is false. Conditional on vt = v, the probability of observing the a buy order at t is

gt(B, v) = ρ1v>At + ρ
2
1v∈[Bt,At] + 1−ρ

2
. (2)

To see this, consider the following cases:

• If v ∈ [Bt, At], the informed traders are not willing to trade, and an uninformed trader

submits a buy order with probability 1
2
. Then, gt(B, v) = ρ× 0 + ρ

2
× 1 + 1−ρ

2
= 1

2
.

• If v /∈ [Bt, At], an informed trader (chosen with probability ρ) submits a buy order with

probability 1v>At , while an uninformed trader (chosen with probability 1− ρ) submits

a buy order with probability 1
2
. Then, gt(B, v) = ρ1v>At + ρ

2
× 0 + 1−ρ

2

Similarly, the probability of observing a sell order at t is

gt(S, v) = ρ1v<Bt + ρ
2
1v∈[Bt,At] + 1−ρ

2
. (3)

The next result describes the evolution of the public density.

Proposition 1. Consider a rapidly decaying public density φt, and an ask-bid pair with

At > Bt. After observing an order Ot ∈ {B, S}, the density of vt is ψt(v|Ot), where

ψt(v|B) =

(
ρ1v>At + ρ

2
1v∈[Bt,At] + 1−ρ

2

)
· φt(v)

ρ
2
(1− Φt(At)) + ρ

2
(1− Φt(Bt)) + 1−ρ

2

,

ψt(v|S) =

(
ρ1v<Bt + ρ

2
1v∈[Bt,At] + 1−ρ

2

)
· φt(v)

ρ
2
Φt(At) + ρ

2
Φt(Bt) + 1−ρ

2

,

(4)

where Φt is the cumulative density function corresponding to φt. The public density at t + 1
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is rapidly decaying, and satisfies

φt+1(w|Ot) =

∫ +∞

−∞
ψt(v|Ot)N (w − v, 0, σv)dv =

(
ψt(·|Ot) ∗ N (·, 0, σv)

)
(w), (5)

where “∗” denotes the convolution of two densities.

Proposition 1 shows how the public density evolves once a particular order (buy or sell)

is submitted at t. Note, however, that this result does not assume anything about the ask

and bid other than At > Bt, so in principle these can be chosen arbitrarily. In equilibrium,

however, these prices must satisfy the dealer’s pricing conditions, namely that the dealer’s

expected profits at t must be zero.

In the next section (Section 3.2) we impose these conditions and we show how to determine

the equilibrium ask and bid. Then, Proposition 1 allows us to describe the whole evolution of

the public density, conditional on the initial density φ0 and the sequence of orders O0,O1, . . .

that have been submitted.

3.2 Ask and Bid Prices

Let φt be the public density of vt before trading at t. We define an ask-bid pair (At, Bt) as

a pair of ask and bid satisfying the pricing conditions of the dealer. As the dealer is risk

neutral and competitive, the pricing conditions are: (i) the ask At is the expected value of

vt conditional on a buy order at t, and (ii) the bid Bt is the expected value of vt conditional

on a sell order at t. Using the previous notation, the dealer’s pricing conditions are that At

is the mean of ψt(v|B), the posterior density of vt after observing a buy order at t; and Bt is

the mean of ψt(v|S), the posterior density after observing a sell order at t. Thus, the dealer’s

pricing conditions are equivalent to

At =

∫ +∞

−∞
vψt(v|B)dv, Bt =

∫ +∞

−∞
vψt(v|S)dv. (6)

For future use, we record the following straightforward result.
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Corollary 1. The pair (At, Bt) is an ask-bid pair if and only if the following equations are

satisfied:

At = µt+1,B, Bt = µt+1,S, with µt+1,Ot =

∫ +∞

−∞
wφt+1(w|Ot)dw, Ot = {B, S}. (7)

The next result shows that the existence of an ask-bid pair is equivalent to solving a 2× 2

system of nonlinear equations. Suppose µt is the mean of φt. For (A,B) ∈ (µt,∞)×(−∞, µt),

define the functions:

F (A,B) =
Θt(A) + Θt(B)

A− µt
− 1 + ρ

ρ
+ Φt(A) + Φt(B),

G(A,B) =
Θt(A) + Θt(B)

µt −B
− 1− ρ

ρ
− Φt(A)− Φt(B),

(8)

where Φt is the cumulative density associated to φt, and Θt is defined by

Θt(v) =

∫ v

−∞
(µt − w)φt(w)dw. (9)

The function Θt is strictly positive everywhere and approaches zero at infinity on both sides.9

Proposition 2. Consider a rapidly decaying public density φt, with mean µt. Then, the

existence of an ask-bid pair is equivalent to finding a solution (A,B) ∈ (µt,∞)× (−∞, µt) of

the system of equations:

F (A,B) = 0, G(A,B) = 0. (10)

A solution of (10) always exists. Among the set of ask-bid pairs (A,B) there is a unique one

for which A is closest to µt.

The last statement in Proposition 2 shows that one can choose a unique ask-bid pair based

on the criterion that the ask A be the closest to the public mean µt. Denote this pair by

(At, Bt). In the rest of the paper, we assume that this is indeed the ask-bid pair chosen by

the dealer.10

9As φt is rapidly decaying, Θt(−∞) is equal to zero. The definition of µt implies that Θt(+∞) =∫ +∞
−∞ (µt − w)φt(w) = µt −

∫ +∞
−∞ wφt(w) = 0. Also, Θ′t(v) = (µt − v)φt(v), hence Θt(v) is increasing below µt

and decreasing above µt. As Θt(±∞) = 0, the function Θt is strictly positive everywhere.
10In principle, the equations in (10) might have multiple solutions, meaning that one could manufacture an
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4 Equilibrium with Approximate Bayesian Inference

In this section, we assume that at each step the dealer approximates the public density with a

normal density such that the first two moments are correctly computed. Specifically, suppose

that the dealer regards vt to be distributed as

φat (v) = N (v, µt, σt). (11)

After the dealer observes an order Ot at t, denote by φt+1(w|Ot) the exact density of vt+1

conditional on the past order flow including Ot, and by µt+1,Ot and σt+1,Ot its mean and

standard deviation, respectively. Then, before trading at t + 1 the dealer regards vt+1 to be

distributed as

φat+1(w|Ot) = N
(
w, µt+1,Ot , σt+1,Ot

)
. (12)

Thus, we assume that the dealer continues to make the approximation at each step:

φt = φat . (13)

Section 5 discusses the accuracy of this approximation. For simplicity, we continue to refer

to φt(v) as the public density, µt as the public mean, and σt as the public volatility.

4.1 Evolution of the Public Density

Proposition 3. Suppose the public density at t = 0, 1, 2, . . . is φt(v) = N (v, µt, σt). After

observing Ot ∈ {B, S}, the posterior mean and volatility at t+ 1 satisfy

µt+1,B = µt + δσt, µt+1,S = µt − δσt, σt+1,B = σt+1,S =
√

(1− δ2)σ2
t + σ2

v . (14)

public density φt for which there is more that one corresponding ask-bid pair. Numerically, we have computed
the sequence of public densities that starts with a normal density φ0 and is associated by an arbitrary sequence
of orders, but we have not yet been able to encounter a non-unique ask-bid pair. Nevertheless, we must account
for the possibility that such non-uniqueness may in fact arise.
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where δ is defined by:

δ = g−1(2ρ), with g(x) =
x

N (x, 0, 1)
. (15)

There is a unique ask: At = µt + δσt and unique bid: Bt = µt− δσt, and the bid-ask spread is

st = At −Bt = 2δσt. (16)

We now investigate whether the public density reaches a steady state, in the sense that

its shape converges to a particular density. As the mean µt evolves according to a random

walk, we must demean the public density and focus on its standard deviation σt. The next

result shows that the public volatility σt converges to a particular value, σ∗, regardless of the

initial value σ0.

Proposition 4. For any t = 0, 1, 2, . . . the public volatility satisfies

σ2
t = σ2

∗ +
(
σ2

0 − σ2
∗
)

(1− δ2)t, (17)

where

σ∗ =
σv
δ

=
σv

g−1(2ρ)
. (18)

For any initial value σ0 and any sequence of orders, the public volatility σt monotonically

converges to σ∗, and the bid-ask spread monotonically converges to

s∗ = 2σv. (19)

Thus, Proposition 4 shows that in the long run the equilibrium approaches a particular

stationary equilibrium, which we analyze next.

4.2 Stationary Equilibrium

We define a stationary equilibrium an equilibrium in which the public volatility σt is constant.

According to Proposition 4, if the initial density is φ0(v) = N (v, µ0, σ∗), then all subsequent
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public densities have the same volatility, namely the stationary volatility σ∗. We now analyze

the properties of the stationary equilibrium.

Corollary 2. In the stationary equilibrium, the public volatility σ∗ is decreasing in the fraction

of informed trading ρ, while the bid-ask spread s∗ does not depend on ρ. Both σ∗ and s∗ are

increasing in the fundamental volatility σv.

Intuitively, an increase in the fundamental volatility σv raises the public volatility as the

dealer’s knowledge about the fundamental value becomes more imprecise. It also increases

the adverse selection overall for the dealer, hence she increases the bid-ask spread. Moreover,

a decrease in the fraction of informed trading ρ means that the order flow becomes less infor-

mative, and therefore the dealer’s knowledge about the fundamental value is more imprecise

(σ∗ is large).

The surprising result is that the stationary bid-ask spread is independent of ρ. This is

equivalent to the public mean update being independent of ρ. Indeed, the public mean evolves

according to

µt+1,B = µt + σv, µt+1,S = µt − σv. (20)

Thus, the bid-ask spread is s∗ = (µt + σv) − (µt − σv) = 2σv. To understand the intuition

behind this result, consider the case when ρ is low. Suppose the dealer observes a buy order

at t. As ρ is low, there are two effects on the size of the public mean update. The first effect

is negative: the trader at t is unlikely to be informed, which decreases the size of the update.

This is the traditional adverse selection effect from models such as GM85. The second effect

is positive: when the trader at t is informed, he must have observed a large fundamental

value vt, as the uncertainty in vt (measured by the public volatility σ∗) is also large. This

we call the dynamic efficiency effect: more informed traders create over time a more precise

knowledge about the fundamental value, and thus reduce the effect of informational updates.

It turns out that the dynamic efficiency effect exactly cancels the adverse selection effect

in a stationary setup, and as a result the magnitude of the public mean updates due to

order flow is independent of ρ. To understand why, consider an equilibrium which is not

necessarily stationary. If there was no order flow at t, then the dealer’s uncertainty (the

public volatility) would increase from t to t+ 1 as the fundamental value diffuses. But there
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is order flow at t, which provides information to the dealer and hence reduces uncertainty at

t+1. In a stationary equilibrium the public uncertainty stays constant. Thus, as the increase

in uncertainty due to value diffusion is independent of the informed share ρ, the decrease in

uncertainty due to order flow should also be independent of ρ. But an order flow information

content that is independent of ρ translates into the magnitude of public mean updates also

being independent of ρ.

Formally, the decrease in uncertainty due to the order Ot at t can be evaluated by com-

paring the prior public density φt(v) and the posterior density ψt(v|Ot). One measure of the

decrease in uncertainty is how much the public mean is updated after a buy or sell order

(which are equally likely). But (20) implies that this update is ±σv, which from the point

of view of the information at t is a binary distribution, with standard deviation σv which is

indeed independent of ρ. Note that we have also essentially proved the following result.

Corollary 3. In the stationary equilibrium, the volatility of the change in public mean is

constant and equal to σv.

This result is in fact true quite generally. Indeed, in Appendix B we prove that for any

filtration problem in which the variance remains constant over time the volatility of the change

in public mean must equal the fundamental volatility.

4.3 Liquidity Dynamics

In this section we analyze the evolution of the public volatility and the bid-ask spread after

a shock to either the public volatility σt, the fundamental volatility σv, or the fraction of

informed trading ρ. We are also interested in how quickly the equilibrium converges to the

stationary equilibrium. In general, the speed of convergence of a sequence xt that converges

to a limit x∗ is defined as the limit ratio

S = lim
t→∞

|x2
t − x2

∗|
|x2
t+1 − x2

∗|
, (21)

provided that the limit exists. The next result computes the speed of convergence for several

variables of interest.
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Corollary 4. The public volatility, public variance and bid-ask spread have the same speed of

convergence:

S =
1

1− δ2
. (22)

Moreover, S is increasing in the fraction of informed trading ρ.

Corollary 4 shows that the variables of interest have the same speed of convergence S,

and we can thus call S simply as the convergence speed of the equilibrium. Another result of

Corollary 4 is that a larger fraction of informed trading ρ implies a faster convergence speed of

the equilibrium to its stationary value. This is intuitive, as more informed trading helps the

dealer make quicker dynamic inferences. Note that when ρ = 1, equation (15) implies that

δ = g−1(2) ≈ 0.647, thus the maximum value of δ is less than one. Therefore, the maximum

convergence speed is finite.

We now consider the effect of various types of shocks to our stationary equilibrium. In the

first row of Figure 1 we plot the effects of a positive shock to the fraction of informed trading,

meaning that ρ suddenly jumps to a higher value ρ′. This generates an increase in δ, which

jumps to its new value δ′ = g−1(ρ′), and it also generates a drop in the stationary public

volatility, which is now σ′∗ = σv/δ
′. Nevertheless, as there is no new information above the

fundamental value, the current public volatility σt remains equal to its old stationary value,

σ∗ = σv/δ. Proposition 4 shows that the public volatility starts decreasing monotonically

toward its stationary value σ′∗. Note that according to Corollary 4 the speed of convergence

to the new stationary equilibrium is S ′ = 1/(1−δ′2), which is higher than the old convergence

speed. We also describe the evolution of the bid-ask spread, which according to Proposition 3

satisfies st = 2δ′σt. Initially, the bid-ask spread jumps to reflect the jump to δ′. But then, as

σt converges to σ′∗ = σv/δ
′, the bid-ask spread starts decreasing to s∗ = 2σv, which does not

depend on ρ.

To summarize, after a positive shock to ρ, the public volatility starts decreasing mono-

tonically to its now lower stationary value, while the bid-ask spread initially jumps and then

decreases monotonically to the same stationary value (that does not depend on ρ). Intuitively,

a positive shock to the fraction of informed trading leads to a sudden increase in adverse se-

lection for the dealer, reflected in an initially larger bid-ask spread, after which the bid-ask

15



Figure 1: Public Volatility and Bid-Ask Spread after Shocks.
This figure plots the effect of three types of shocks on the public volatility σt, and on the bid-ask

spread st (each shock occurs at t0 = 100). The initial parameters are: σv = 1, and ρ = 0.1 (hence

δ = 0.0795, σ∗ = 12.573, s∗ = 2). In the first row, the fraction of informed trading ρ jumps from

0.1 to 0.2 (hence σ∗ drops from 12.573 to 6.345). In the second row, the public volatility drops from

σ∗ = 12.573 to half of its value (6.286). In the third row, the fundamental volatility jumps from 1

to 2.
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spread reverts to its fundamental value, which is independent of informed trading. At the

same time, more informed trading leads to more precision for the dealer in the long run, which

is reflected in a smaller public volatility.
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In the second row of Figure 1 we plot the effects of a negative shock to the public volatility,

meaning that σt suddenly drops from the stationary value σ∗ to a lower value. This drop can

be caused for instance by public news about the value of the asset vt. Then, according to

Proposition 4, the public volatility increases monotonically back to the stationary value. The

bid-ask spread is always proportional to the public density: st = 2δσt, hence st also drops

initially and then increases monotonically toward the stationary value s∗. Intuitively, public

news has the effect of helping the dealer initially to get a more precise understanding about

the fundamental value. This brings down the bid-ask spread, as temporarily the dealer faces

less adverse selection. But this decrease is only temporary, as the value diffuses and the

same forces increase the public volatility and the bid-ask spread toward their corresponding

stationary values, which are the same as before.

In the third row of Figure 1 we plot the effects of a positive shock to the fundamental

volatility, meaning that σv suddenly jumps to a higher value σ′v. This implies that every value

increment vt+1 − vt now has higher volatility, but the uncertainty in vt, which is measured

by the public volatility σt, stays the same.11 Proposition 4 shows that the stationary public

volatility changes to σ′∗ = σ′v/δ, and the stationary bid-ask spread changes to s′∗ = 2σ′v.

Therefore, the public density increases monotonically from the initial stationary value to

the new stationary value, and the same is true for the bid-ask spread. Intuitively, a larger

fundamental volatility increases overall adverse selection for the dealer, and as a result both

the public density and the bid-ask spread eventually increase.

5 Equilibrium with Exact Bayesian Inference

In this section, we analyze in more detail the evolution of the public density φt when the dealer

is fully Bayesian. In particular, we are interested in computing the average shape of the public

density over all possible future paths of the game.12 Note that when computing the average

11One can mix this type of shock with a shock to the public volatility σt, which was already analyzed.
12As we see in Internet Appendix (Sections 1 and 2), one expects a well defined stationary density for the

continuous time Markov chain associated to our game. The only problem is that the fundamental value vt is
no longer stationary in our case, but follows a random walk. One can show that it is still possible to define a
stationary density as long as one does not require it to integrate to one over v. But we are interested in the
simpler problem of computing the marginal stationary density of vt − µt, which we solve numerically.
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shape of a density, we consider the average of the various densities after demeaning them. We

then show numerically that this average exists and is not too far from the stationary public

density described in Section 4.2, which is a normal density with mean zero and standard

deviation equal to σ∗ = σv/δ.

We thus demean the variables and densities involved in the previous formulas, and in

addition we normalize them by σ∗:

Ãt =
At − µt
σ∗

, B̃t =
Bt − µt
σ∗

, ṽt =
vt − µt
σ∗

, φ̃t(ṽ) = σ∗φt(µt + σ∗ṽ),

Φ̃t(ṽ) =

∫ ṽ

−∞
φ̃t(w)dw, ψ̃t(ṽ|Ot) = σ∗ψt(µt + σ∗ṽ|Ot).

(23)

With this new notation, the equations (4) and (5) from Proposition 1 imply the following

result.

Corollary 5. Consider a rapidly decaying public density φt with normalization φ̃t, and an

ask-bid pair (At, Bt) with normalization (Ãt, B̃t). After observing an order Ot ∈ {B, S}, the

normalized density at t+ 1 is φ̃t+1(w̃|Ot), where

φ̃t+1(w̃|B) =

∫ +∞

−∞
N
(w̃ − ṽ + Ãt

δ

) (
ρ1ṽ>Ãt + ρ

2
1ṽ∈[B̃t,Ãt]

+ 1−ρ
2

)
· φ̃t(ṽ)

ρ
2
(1− Φ̃t(Ãt)) + ρ

2
(1− Φ̃t(B̃t)) + 1−ρ

2

dṽ,

φ̃t+1(w̃|S) =

∫ +∞

−∞
N
(w̃ − ṽ + B̃t

δ

) (ρ1ṽ<B̃t + ρ
2
1ṽ∈[B̃t,Ãt]

+ 1−ρ
2

)
· φ̃t(ṽ)

ρ
2
Φ̃t(Ãt) + ρ

2
Φ̃t(B̃t) + 1−ρ

2

dṽ.

(24)

Figure 2 displays the normalized public density after t = 0, t = 1, and t = 5 buy orders

for various values of the informed share ρ. We notice by visual inspection that the normalized

public density is close to the standard normal density even after a sequence of 5 buy orders

(this sequence happens with probability 2−5, which is approximately 3.13%). The deviation of

the normalized public densities from the standard normal density is at its smallest level when

the fraction of informed trading ρ is either small or large, and it peaks for an intermediate

value ρ near 0.2. When ρ is small, the order flow is uninformative, hence the posterior is not

far from the prior. When ρ is large, the order flow is very informative, hence the posterior

depends strongly on the increment, which is normally distributed.
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Figure 2: Exact Normalized Public Density after Series of Buy Orders.
Each of the 6 plots represents the evolution of the normalized public density φ̃t after t = 0, t = 1

and t = 5 buy orders. The initial normalized public density in all cases (at t = 0) is the standard

normal density with mean zero and volatility one. The 6 plots correspond to the fraction of informed

trading ρ ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9}.

It turns out, however, that the stationary shape of the public density is not precisely

normal, but it has “fat tails,” that is, its fourth centralized moment (kurtosis) is larger than

3. Table 1 displays, for each ρ ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9}, several moments of the average

normalized density computed after 200 different random paths. As the starting density (at

t = 0) is standard normal for all the different ρ, we need to make sure that we choose a path

length long enough for the average density to stabilize. Numerically, we see that it is enough
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Table 1: Average Normalized Public Density after Series of Random Orders.
For each informed share ρ ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 0.9}, consider 200 random series of 20 orders

chosen among buy or sell with equal probability, and denote by φ̃S the normalized public den-

sity computed after observing the series S = 1, 2, . . . , 200. The table displays four estimated mo-

ments of the average ψ = φ̃1+φ̃2+···+φ̃200
200 : the mean µ =

∫ +∞
−∞ xψ(x)dx, the standard deviation

σ =
(∫ +∞
−∞ (x−µ)2ψ(x)dx

)1/2
, the skewness

∫ +∞
−∞

(x−µ
σ

)3
ψ(x)dx, and the kurtosis

∫ +∞
−∞

(x−µ
σ

)4
ψ(x)dx.

It also displays the average bid-ask spread normalized by s∗ = 2σv (N.Spread).

ρ 0.01 0.1 0.3 0.5 0.7 0.9

Mean -0.000 0.000 -0.001 -0.001 -0.010 -0.002

St.Dev. 1.000 1.002 1.039 1.056 1.041 1.009

Skewness -0.001 0.018 0.016 -0.003 -0.012 -0.009

Kurtosis 3.005 3.419 4.587 4.597 4.089 3.343

N.Spread 1.003 0.966 0.959 0.988 1.014 1.004

to choose t = 20.13 Thus, in Table 1 we display the first four centralized moments for the

average normalized public density at t = 20, computed over 200 random paths.

The first three moments of the average density at t = 20 are similar to the moments of the

standard normal density: the mean and the skewness (centralized third moment) are close

to zero, and the standard deviation is close to one. The kurtosis, however, is larger than 3,

indicating that the stationary public density has indeed fat tails. Nevertheless, the deviation

from the standard normal density is not large, especially when ρ is small or large. Moreover,

the last row in Table 1 implies that the average bid-ask spread in each case is quite close to

s∗ = 2σv, which is the stationary value in the approximate Bayesian case: see equation (19).

Thus, we argue that the normal approximation made in Section 4 is reasonable, especially

when it comes to our main liquidity measure, the bid-ask spread.

The question remains how different the normalized public density can be from the average

density. This question is already discussed tangentially in Figure 2, where we observe the

normalized public density after five buy orders. But to understand this issue in more detail,

13We have checked that the average density at t = 20 is in absolute value less than 0.01 apart from the
average density at t = 25 or t = 30.

20



Figure 3: Normalized Public Density after Series of Random Orders.
For an informed share ρ = 0.1, consider 200 random series of 20 orders chosen among buy or sell with

equal probability, and denote by φ̃S the normalized public density computed after observing the series

S = 1, 2, . . . , 200. The table displays the densities φ̃S , as well as their average ψ = φ̃1+φ̃2+···+φ̃200
200 .

The average density is displayed with a thick dashed line.

we choose one particular value of the informed share, ρ = 0.1, for which the normalized public

density after five buy orders appears more different than the normal density. Figure 3 displays

the normalized public density after each of the 200 random series of 20 orders, along with the

average density. Then, the results in Table 1 and Figure 3 can be summarized by observing

that the normalized public density does not deviate too far from its average value, and in

turn this average value does not deviate too far from the standard normal density.

6 Robustness and Extensions

6.1 Discussion

In this section we discuss whether our main result (that liquidity is not affected by the fraction

ρ of informed trading) remains true if we modify the model assumptions. For that, we recall

the intuition behind that result, as described in Section 4.2. Consider the case when ρ is low,
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and suppose the dealer observes a buy order at t. First, we have the adverse selection effect:

a low ρ means that the buyer is unlikely to be informed, which implies that the update of

public mean (and hence the dealer’s bid-ask spread) should be small. Second, there is an

opposing dynamic efficiency effect: in the rare case when the buyer is actually informed, he

must have observed a large fundamental value vt, as the uncertainty in vt (measured by the

public volatility σ∗) is also large.

Note that for this offsetting argument to fully work, the public volatility σ∗ must be very

large when ρ is very small. This is possible only if the range of the fundamental value is

not restricted to become very large. Such restrictions can occur in two ways: either (i) the

fundamental value is directly assumed to be bounded, or (i) the signals received by the dealer

essentially bound the dealer’s uncertainty.

Situation (i) occurs if we require the fundamental value to lie in a bounded interval such as

[0, 1].14 We analyze such a model in the Internet Appendix Section 2, where the fundamental

value is either zero or one (as in Glosten and Milgrom, 1985), and it switches every period

between these two values with probability ν < 1/2. In that case, the dynamic efficiency

effect no longer offsets the adverse selection effect. Nevertheless, even if ρ is small, as long

as ρ is large relative to the switching parameter ν, the dynamic efficiency effect is relatively

strong, and as a result the dependence of the average bid-ask spread on ρ is weaker, and the

equilibrium approaches the one in the diffusing-value model where the average bid-ask spread

is independent of ρ.

Situation (ii) occurs if the dealer receives at every t signals about the level vt. Note that

this is not by itself enough to bound dealer’s uncertainty about vt. Indeed, in Section 6.2

we consider an extension of our model in which, in addition to observing the order flow, the

dealer receives at every t signals about the increment vt − vt−1. In that case, we see that

the main result goes through. The reason is that the dealer’s uncertainty about the level vt

becomes large when ρ is small: the dealer only learns about vt once, after which she learns

only about future value increments. If, by contrast, the dealer received at every t signals

about the level vt, then the uncertainty would remain bounded even when ρ is very small,

14This setup of course cannot occur if the fundamental value follows a random walk.
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and the main result would no longer hold.

6.2 Public News

We now analyze an extension of the model in Section 2, in which the dealer receives news

every period (this could be interepreted as the dealer receiving public news). Specifically,

suppose that before each t = 1, 2, . . . the dealer receives a signal ∆st = st − st−1 about the

increment ∆vt = vt − vt−1:15

∆st = ∆vt + ∆ηt, with ∆ηt = ηt − ηt−1
IID∼ N

(
·, 0, ση

)
. (25)

Denote, respectively, by µt and σt the public mean and public volatility just before trading

at t = 0, 1, 2, . . . (but after the signal ∆st is observed). Note that this extension generalizes

the model in Section 2: when ση approaches infinity, it is as if the dealer receives no signal at

t. The next result generalizes Proposition 4.

Proposition 5. For any t = 0, 1, 2, . . . the public mean and volatility satisfy

µt+1 = µt ± δσt +
σ2
v

σ2
v + σ2

η

∆st+1, σ2
t = σ2

∗ +
(
σ2

0 − σ2
∗
)

(1− δ2)t, (26)

where δ = g−1(2ρ), as in equation (15), and

σ∗ =
σvη
δ

with σvη =
σvση√
σ2
v + σ2

η

. (27)

For any initial value σ0 and any sequence of orders, the public volatility σt monotonically

converges to σ∗, and the bid-ask spread monotonically converges to

s∗ = 2σvη. (28)

15Alternatively, but perhaps less realistically, the dealer receives in each period t a signal about the level
vt. In this case, there is an upper bound for the dealer’s uncertainty even if the informed share is very small.
Hence, the public volatility is no longer increasing indefinitely with the informed share, and therefore the
dynamic efficiency effect is reduced. As a result, the adverse selection effect dominates the dynamic efficiency
effect, and the stationary bid-ask spread is increasing in the informed share.
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Proposition 5 is essentially the same result as Proposition 4, except that the fundamental

volatility σv is replaced here by σvη. The parameter σvη represents the increase in dealer

uncertainty from t to t+ 1, conditional on her receiving the signal ∆st+1.16 When ση is zero,

the dealer learns perfectly the increment ∆v, hence even if the dealer does not know the initial

value v0, she ends up by learning vt almost perfectly (she also learns about vt from the order

flow). When ση approaches infinity, the dealer receives uninformative signals, σvη approaches

σv, and the equilibrium behavior is described as in Proposition 4.

The stationary bid-ask spread s∗ is twice the parameter σvη. Thus, the bid-ask spread

is increasing in the news uncertainty parameter ση, and ranges from zero (when ση = 0) to

2σv (when ση =∞). The relation between the bid-ask spread and ση is intuitive: with more

imprecise news, the dealer is more uncertain about the asset value, and sets a larger stationary

bid-ask spread.

Note that even in this more general context the stationary bid-ask spread s∗ does not

depend on the informed share ρ. The intuition is the same as for Proposition 4, and is

discussed at the end of the proof of Proposition 5. This intuition is based on the general

result (proved in Appendix B) that for any filtration problem in which the variance remains

constant over time, the variance of the change in public mean must equal the fundamental

variance. But the latter variance is independent of ρ, as is the variance of the signal ∆s,

hence the bid-ask spread is also independent of ρ.

7 Conclusion

In this paper we have presented a dealer model in which the asset value follows a random

walk. The stationary equilibrium of the model has novel properties. Our main finding is

that the stationary bid-ask spread no longer depends on the informed share (the fraction of

traders that are informed). This result is driven by two offsetting effects: (i) the traditional

adverse selection effect: the dealer sets higher bid-ask spreads to protect from a larger number

of informed traders, and (ii) the dynamic efficiency effect: the dealer learns faster from the

order flow when there are more informed traders, and this reduces the bid-ask spread.

16Indeed, its square σ2
vη is equal to the conditional variance Var

(
∆vt+1|∆st+1

)
.
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The non-stationary equilibria converge to the stationary equilibrium, regardless of the

initial state. The evolution of the non-stationary equilibrium after various types of shocks

provides additional testable implications of our model. For instance, after a positive shock to

the informed share (e.g., if more informed investors start trading in that stock) the bid-ask

spread jumps but then it decreases again to its stationary level. This type of liquidity resilience

occurs purely for informational reasons, without any additional market maker jumping in to

provide liquidity.

Appendix A. Proofs of Results

Proof of Proposition 1. Using Bayes’ rule, the posterior density of vt after observing O is

ψt(v|O) =
P(Ot = O | vt = v) · P(vt = v)∫
v
P(Ot = O | vt = v) · P(vt = v)

=
gt(O, v) · φt(v)∫
v
gt(O, v) · φt(v)

, (A1)

where
∫
v
F (v) is shorthand for

∫ +∞
−∞ F (v)dv. Substituting gt(O, v) from (2) and (3) in the

above equation, we obtain (4).

Let f(w, v) = P(vt+1 = w|vt = v) = N (w − v, 0, σv) be the transition density of vt. To

compute the posterior density of vt after observing Ot = O, note that

φt+1(w|O) =

∫
v

P(vt+1 = w | vt = v,Ot = O) · P(vt = v | Ot = O)

=

∫
v

P(vt+1 = w | vt = v) · P(vt = v | Ot = O) =

∫
v

f(w, v) · ψt(v|O),

(A2)

which proves (5).

To simplify notation, we omit conditioning on the order Ot. From (4), it follows that

the posterior density ψt is equal to φt multiplied by a piecewise constant function. The

prior density φt is rapidly decaying, hence it is bounded. Therefore ψt is also bounded and

continuous, although it is no longer smooth. Nevertheless, when we convolute ψt(·) with

N (·, 0, σv) the result φt+1 becomes smooth. Indeed, the N ’th derivative dNφt+1(w)/dwN

involves differentiating the smooth function N (w − v, 0, σv) under the integral sign. As the
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remaining term ψt(v) is bounded, the integrals are well defined, and hence φt+1 is a smooth

function. The fact that φt+1 is also rapidly decaying can be seen in the same way, using again

the fact that ψt is bounded.

Proof of Corollary 1. By definition of the ask-bid pair, At is the mean of the posterior

density of vt after observing a buy order at t. But the increment vt+1− vt has zero mean and

is independent of the previous variables until t. Therefore, At is also the mean of the posterior

density of vt+1 after observing a buy order at t. Similarly, Bt is the mean of the posterior

density of vt+1 after observing a sell order at t. This proves the equations in (7).

Proof of Proposition 2. Define the following function:17

Ht(v) =

∫ v

−∞
wφt(w)dw = vΦt(v)−

∫ v

−∞
Φt(w)dw. (A3)

Note that Ht(−∞) = 0 and Ht(+∞) =
∫∞
−∞wφt(w)dw = µt. Also, note that

Θt(v) = µtΦt(v)−Ht(v). (A4)

To prove the desired equivalence, start with an ask-bid pair (At, Bt). This pair must satisfy

the dealer’s pricing conditions: At is the mean of ψt(·|B), and Bt is the mean of ψt(·|S). Using

the formulas in (4) for ψt(v|O), we compute

At =
ρ
(
µt −Ht(At)

)
+ ρ

2

(
Ht(At)−Ht(Bt)

)
+ 1−ρ

2
µt

ρ
2
(1− Φt(At)) + ρ

2
(1− Φt(Bt)) + 1−ρ

2

,

Bt =
ρHt(Bt) + ρ

2

(
Ht(At)−Ht(Bt)

)
+ 1−ρ

2
µt

ρ
2
Φt(At) + ρ

2
Φt(Bt) + 1−ρ

2

.

(A5)

17In the formula for Ht we use integration by parts, and also the fact that limv→−∞ vΦt(v) = 0. To prove
this last fact, suppose v = −x with x > 0. Since φt is rapidly decaying, φt(−x) < Cx−3 for some constant C.

Then xΦt(−x) = x
∫ −x
−∞ φt(w)dw < xCx

−2

2 , which implies limx→∞ xΦt(−x) = 0.
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Using (A4), we compute the following differences:

At − µt =
ρ
2
Θt(At) + ρ

2
Θt(Bt)

ρ(1− Φt(At)) + ρ
2
(Φt(At)− Φt(Bt)) + 1−ρ

2

,

µt −Bt =
ρ
2
Θt(At) + ρ

2
Θt(Bt)

ρΦt(Bt) + ρ
2
(Φt(At)− Φt(Bt)) + 1−ρ

2

.

(A6)

As Θt is strictly positive everywhere (see Footnote 9), we have the following inequalities:

At > µt > Bt, or equivalently At ∈ (µt,+∞) and Bt ∈ (−∞, µt). The equations (A6) can be

written as

F (At, Bt) = 0, G(At, Bt) = 0, (A7)

where the functions F and G are defined in (8). Conversely, suppose we have a solution

(At, Bt) of (A7), with At > µt > Bt. Then, this pair satisfies the equations in (A6), which

are the dealer’s pricing conditions. Thus, (At, Bt) is an ask-bid pair.

We now show that a solution of (A7) exists. The partial derivatives of F and G are

∂F

∂A
= −Θt(A) + Θt(B)

(A− µt)2
,

∂F

∂B
=

A−B
A− µt

φt(B),

∂G

∂A
= −A−B

µt −B
φt(A),

∂G

∂B
=

Θt(A) + Θt(B)

(µt −B)2
.

(A8)

From (8) we see that F (A,B) has well defined limits at B = ±∞, which follows from the

formulas: Θt(±∞) = 0, Φt(−∞) = 0, and Φt(+∞) = 1. Thus we extend the definition of

F for all B ∈ R̄ = [−∞,+∞]. Now fix B ∈ R̄. We show that there is a unique solution

A = α(B) of the equation F (A,B) = 0. From (A8) we see that ∂F
∂A

< 0 for all A ∈ (µt,∞).

From (8) we see that when A ↘ µt, F (A,B) ↗ ∞; while when A ↗ ∞, F (A,B) ↘

−1+ρ
ρ

+ 1 + Φt(B) = −1
ρ

+ Φt(B) < 0 (recall that ρ ∈ (0, 1)). Thus, for any B there is

a unique solution of F (A,B) = 0 for A ∈ (µt,∞). Denote this unique solution by α(B).

Differentiating the equation F
(
α(B), B

)
= 0 implies that for all B the derivative of α(B) is

α′(B) = −∂F
∂B

(α(B), B)/∂F
∂A

(α(B), B) > 0. Define A = α(−∞) and A = α(µt). The results

above imply that both A and A belong to (µt,∞), and α is a bijective function between

[−∞, µt] and [A,A].

A similar analysis shows that for all A ∈ R̄, there is a unique solution B = β(A) of the
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equation G(A,B) = 0. Moreover, the function β is increasing, and if we define B = β(µt) and

B = β(∞), it follows that both B and B belong to (−∞, µt), and the function α is bijective

between [µt,∞] and [B,B].

Next, define the function f : R̄→ R̄ by

f(A) = α
(
β(A)

)
. (A9)

Consider the set

S = {(A,B) | A− f(A) = 0 , B = β(A)}. (A10)

It is straightforward to show that S coincides with the set of all ask-bid pairs. Indeed,

(A,B) ∈ S is equivalent to A = α(B) and B = β(A), which, from the discussion above, is

equivalent to F (A,B) = 0 and G(A,B) = 0. Therefore, the existence of an ask-bid pair is

equivalent to there being at least one solution of A− f(A) = 0.

We now show that the equation A−f(A) = 0 has at least one solution. The function f(A)

is increasing and bijective between [µt,∞] and [α(B), α(B)]. As B,B ∈ (−∞, µt), it follows

that [α(B), α(B)] ⊂ (A,A) ⊂ (µt,∞). When A ↘ µt, A − f(A) → µt − α(B) < 0, while

when A↗∞, A− f(A)→∞− α(B) > 0. Thus, there exists a solution of A− f(A) = 0 on

(µt,∞).

Finally, define

At = inf
{
A ∈ (µt,∞)

∣∣ A− f(A) = 0
}
, Bt = β(At). (A11)

As f is continuous, At also satisfies At − f(At) = 0, hence among all possible ask-bid pairs

the ask closest to µt is attained at At.

Proof of Proposition 3. Denote by φ(·) = N (·, 0, 1) the standard normal density, and by

Φ(·) its cumulative density. Recall that φt(·) is the density of vt just before trading at t, and

ψt(·|Ot) is the density of vt after trading at t. In this proposition, we assume that we start

with a normal density

φt(v) =
1

σt
φ

(
v − µt
σt

)
, (A12)
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with mean µt and volatility σt. Define the normalized ask and bid, respectively, by

at =
At − µt
σt

, bt =
Bt − µt
σt

. (A13)

We now compute the mean and volatility of φt+1(·|Ot). As the increment vt+1−vt ∼ N (0, σ2
v)

is independent of past variables, the mean and volatility of φt+1(·|Ot) satisfy

µt+1,Ot =

∫
v

v ψt(v|Ot), σ2
t+1,Ot = σ2

v +

∫
v

(
v − µt+1,Ot

)2
ψt(v|Ot). (A14)

From (4), we have ψt(v|B) =
ρ1v>At+

ρ
2
1v∈[Bt,At]

+
1−ρ

2
ρ
2

(1−Φt(At))+
ρ
2

(1−Φt(Bt))+
1−ρ

2

φt(v). With the change of variables

z = v−µt
σt

, we compute posterior mean conditional on a buy order:

µt+1,B = µt +

∫ +∞

−∞
(v − µt)

ρ1v>At + ρ
2
1v∈[Bt,At] + 1−ρ

2
ρ
2
(1− Φt(At)) + ρ

2
(1− Φt(Bt)) + 1−ρ

2

1

σt
φ
(
v−µt
σt

)
dv

= µt + σt

∫ +∞

−∞
z

ρ1z>at + ρ
2
1z∈[bt,at] + 1−ρ

2
ρ
2
(1− Φ(at)) + ρ

2
(1− Φ(bt)) + 1−ρ

2

φ(z) dz

= µt + σt
φ(−at) + φ(−bt)

Φ(−at) + Φ(−bt) + 1−ρ
ρ

.

(A15)

Similarly, the posterior mean conditional on a sell order is

µt+1,S = µt − σt
φ(at) + φ(bt)

Φ(at) + Φ(bt) + 1−ρ
ρ

, (A16)

To compute σ2
t+1,Ot , we notice that

∫
v

(
v − µt

)2
ψt(v|Ot) =

∫
v

(
v − µt+1,Ot

)2
ψt(v|Ot) +

(
µt+1,Ot − µt

)2
, (A17)

where we use the fact that
∫
v

(
v − µt+1,Ot

)
ψt(v|Ot) = 0. Using (A14) and (A17), a similar
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calculation as in (A15) implies that the posterior variance conditional on a buy order satisfies

σ2
t+1,B − σ2

v +
(
µt+1,B − µt

)2
=

∫
v

(
v − µt

)2
ψt(v|B)

= σ2
t

∫ +∞

−∞
z2 ρ1z>at + ρ

2
1z∈[bt,at] + 1−ρ

2
ρ
2
(1− Φ(at)) + ρ

2
(1− Φ(bt)) + 1−ρ

2

φ(z) dz

= σ2
t

(
1 +

atφ(at) + btφ(bt)

Φ(−at) + Φ(−bt) + 1−ρ
ρ

)
.

(A18)

Similarly, the posterior variance conditional on a sell order satisfies

σ2
t+1,S − σ2

v +
(
µt+1,S − µt

)2
= σ2

t

(
1 − atφ(at) + btφ(bt)

Φ(at) + Φ(bt) + 1−ρ
ρ

)
. (A19)

We now use the fact that at and bt are the normalized ask and bid. Equation (7) implies

that the ask is At = µt+1,B and the bid is Bt = µt+1,S. If we normalize these equations, we

have at =
µt+1,B−µt

σt
and bt =

µt+1,S−µt
σt

. Using (A15) and (A16), we obtain

at =
φ(−at) + φ(−bt)

Φ(−at) + Φ(−bt) + 1−ρ
ρ

, bt = − φ(at) + φ(bt)

Φ(at) + Φ(bt) + 1−ρ
ρ

, (A20)

We show that this system has a unique solution. We use the notation from the proof of

Proposition 2, adapted to this particular case. For (a, b) ∈ (0,∞)× (−∞, 0), define F (a, b) =

φ(a)+φ(b)
a

− Φ(−a) − Φ(−b) − 1−ρ
ρ

and G(a, b) = φ(a)+φ(b)
−b − Φ(a) − Φ(b) − 1−ρ

ρ
. As in the

proof of Proposition 2, for b ∈ [−∞, 0] define α(b) as the unique solution of F (α(b), b) = 0;

and for a ∈ [0,∞] define β(a) as the unique solution of G(a, β(a)) = 0. For a ∈ (0,∞),

define f(a) = α(β(a)). We show that any solution a of the equation a − f(a) = 0 must

satisfy a < 1. Let b = β(a). Since a = α(b), by definition F (a, b) = 0. As in the proof of

Proposition 2, one shows that F is decreasing in a, and that F (0, b) = +∞ > 0. As b < 0,

F (1, b) = φ(1)−Φ(−1)+φ(b)−Φ(−b)− 1−ρ
ρ
< φ(1)−Φ(−1)+φ(0)−Φ(0) ≈ −0.0177 < 0. As

F (a, b) = 0 and F is decreasing in a (and a is positive), we have just proved that a ∈ (0, 1).

A similar argument (adapted to the function G) shows that b = β(a) ∈ (−1, 0).

As in equation (A9), define f(a) = α
(
β(a)

)
. We need to show that the equation a−f(a) =

0 has a unique solution in (0,∞). By contradiction, suppose there are at least two solutions
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a1 < a2, and suppose a1 is the smallest such solution and a2 the largest. As f is continuous

and takes values in some compact interval [b, b] (see the proof of Proposition 2), a1 and a2 are

well defined. Also, since f is increasing, f is a bijection of [a1, a2]. The argument above then

shows that both a1 and a2 are in (0, 1). If we prove that f ′ < 1 on [a1, a2], it follows that

a − f(a) is increasing on [a1, a2] and cannot therefore be equal to zero at both ends. This

contradiction therefore proves uniqueness, as long as we show that indeed f ′ < 1 on (0, 1).

Let a ∈ (0, 1) and denote b = β(a) and a′ = α(b). Then by the chain rule f ′(a) = α′(b)β′(a).

Differentiating the equations F (α(b), b) = 0 and G(a, β(a) = 0, we have α′(b) = φ(b)(a′−b)a′
φ(a′)+φ(b)

and

β′(b) = φ(a)(a−b)(−b)
φ(a)+φ(b)

. Both these derivatives are of the form φ(x1)(x1+x2)x1
φ(x1)+φ(x2)

with x1, x2 ∈ (0, 1).

This function is increasing in x2, hence it is smaller than φ(x1)(x1+1)x1
φ(x1)+φ(1)

, which is increasing in

x1, hence smaller than one, which is the value corresponding to x1 = 1. Thus, f ′ < 1 on (0, 1)

and the uniqueness is proved.

To find the unique solution, note that by symmetry we expect at = −bt. If we impose

this condition, we have Φ(at) + Φ(bt) = Φ(−at) + Φ(−bt) = 1. Therefore, we need to solve

the equation at = 2ρφ(at) for at > 0, or equivalently g(at) = 2ρ, where g(x) = x
φ(x)

. As the

derivative of φ is φ′(x) = −xφ(x), the derivative of g is g′(x) = 1+x2

φ(x)
> 0 for all x. Moreover,

g(0) = 0 and limx→∞ g(x) =∞, hence g is increasing and a one-to-one and mapping of (0,∞).

Thus, if we define δ = g−1(2ρ), which is the same formula as in (15), we have g(δ) = 2ρ. The

solution of (A20) is then

at = −bt = δ, or At = µt + δσt, Bt = µt − δσt. (A21)

Thus, the posterior mean satisfies

µt+1,B = µt + δσt, µt+1,S = µt − δσt, (A22)

which proves the first part of equation (14).

Equation (A22) also implies that (µt+1,Ot − µt)
2 = δ2σ2

t for Ot ∈ {B, S}. As at = −bt,

equations (A18) and (A19) imply that σ2
t+1,Ot − σ

2
v + δ2σ2

t = σ2
t . Thus, the posterior variance
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satisfies

σ2
t+1,B = σ2

t+1,S = (1− δ2)σ2
t + σ2

v , (A23)

which proves the second part of equation (14).

Proof of Proposition 4. Recall that the function g : [0,∞)→ [0,∞) is increasing and δ =

g−1(2ρ), with ρ ∈ (0, 1). Hence, δ < g−1(2) ≈ 0.647, and in particular δ < 1. Equation (A23)

implies that the public variance evolves according to σ2
t = (1− δ2)σ2

t−1 + σ2
v for any t ≥ 0 (by

convention, σ−1 = 0). Iterating this equation, we obtain σ2
t = (1− δ2)tσ2

0 + 1−(1−δ2)t

δ2
σ2
v . Using

σ∗ = σv
δ

, we obtain σ2
t = σ2

∗ + (1− δ2)t(σ2
0 − σ2

∗), which proves (17). As δ ∈ (0, 1), it is clear

that σ2
t converges monotonically to σ2

∗ for any initial value σ0. The bid-ask spread satisfies

st = 2σtδ, hence it converges to 2σ∗δ = 2σv
δ
δ = 2σv = s∗.

Proof of Corollary 2. Following the proof of Proposition 4, recall that g is increasing on

(0,∞). Its inverse g−1 is therefore also increasing, and σ∗ = σv/g
−1(2ρ) is decreasing in ρ.

The dependence on σv is straightforward.

Proof of Corollary 3. Conditional on the information at t, each order (buy or sell) is

equally likely. Therefore, the change in the public mean µt+1,Ot −µt has a binary distribution

with probability 1/2, which has standard deviation equal to σv, which is the fundamental

volatility.

Proof of Corollary 4. Equation (A23) shows that the public variance σ2
t evolves according

to σ2
t+1 = (1 − δ2)σ2

t + σ2
v . Taking the limit on both sides, we get σ2

∗ = (1 − δ2)σ2
∗ + σ2

v .

Subtracting the two equations above, we get σ2
t+1 − σ2

∗ = (1− δ2)(σ2
t − σ2

∗), which proves the

speed of convergence formula (22) for the public variance. As σ2
t −σ2

∗ = (σt−σ∗)(σt+σ∗), the

formula (22) is true for the public volatility as well. Finally, the bid-ask spread is st = 2δσt,

which proves (22) for the bid-ask spread.

Proof of Corollary 5. This follows directly from equations (4) and (5) from Proposition 1,

making the change of variables from equation (23).

Proof of Proposition 5. The only difference from the setup of Section 2 is that after trad-

ing at t (but before trading at t+ 1) the dealer receives a signal ∆st+1 = ∆vt+1 + ∆ηt+1. By
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notation, just before trading at t, vt is distributed as N (·, µt, σt). We thus follow the proof of

Propositions 3 and 4, and infer that after trading at t the dealer regards vt to be distributed as

N (·, µ′t, σ′t), where µ′t = µt±δσt and σ′2t = (1−δ2)σ2
t .

18 After observing ∆st+1 = ∆vt+1+∆ηt+1,

the dealer computes E
(
∆vt+1|∆st+1

)
= σ2

v

σ2
v+σ2

η
∆st+1 and Var

(
∆vt+1|∆st+1

)
=

σ2
vσ

2
η

σ2
v+σ2

η
= σ2

vη.

Hence, after observing the signal, the dealer regards vt+1 to be distributed as N (·, µt+1, σt+1),

with

µt+1 = µ′t +
σ2
v

σ2
v + σ2

η

∆st+1, σ2
t+1 = σ′2t + σ2

vη = (1− δ2)σt + σ2
vη. (A24)

The recursive equation for σt is the same as (A23), except that instead of σv we now have

σvη. Then, the same proof as in Propositions 3 and 4 can be used to derive all the desired

results.

Note that equation (26) implies that the change in public mean is ∆µt+1 = ±δσt +

σ2
v

σ2
v+σ2

η
∆st+1. Thus, in the stationary equilibrium, Var(∆µt+1) = δ2σ2

∗ + σ4
v

(σ2
v+σ2

η)2
(σ2

v + σ2
η) =

σ2
vη + σ4

v

σ2
v+σ2

η
= σ2

v = Var(∆vt+1). This verifies the result in Appendix B that in any stationary

filtration problem the variance of the change in public mean must equal the fundamental

variance. Moreover, the half spread is equal to δσ∗ = σvη, which does not depend on the

informed share ρ.

Appendix B. Stationary Filtering

We show that in a filtration problem that is stationary (in a sense to be defined below) the

variance of value changes is the same as the variance of the public mean changes. Let vt be

a discrete time random walk process with constant volatility σv. Suppose each period the

market gets (public) information about vt. Let It be the public information set available at

time t. Denote by µt = E(vt|It) = Et(vt) the public mean at time t, i.e., the expected asset

value given all public information. This filtration problem is called stationary if the public

18The sign ± is plus if a buy order is submitted at t, and minus if a sell order is submitted at t.
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variance is constant over time:

Vart(vt) = Vart+1(vt+1). (B1)

The next result gives a necessary and sufficient for the filtration problem to be stationary.

Proposition 6. The filtration problem is stationary if and only if

Var(vt+1 − vt) = Var(µt+1 − µt).

Proof. Since µt = Et(vt), we have the decomposition vt = µt + ηt, where ηt is orthogonal

on the information set It. Moreover, Var(ηt) = Vart(vt). Similarly, vt+1 = µt+1 + ηt+1, and

Var(ηt+1) = Vart+1(vt+1). Thus, the stationary condition reads Var(vt+1−µt+1) = Var(vt−µt).

We can decompose vt+1 − µt in two ways:

vt+1 − µt = (vt+1 − µt+1) + (µt+1 − µt)

= (vt+1 − vt) + (vt − µt).
(B2)

We verify that these are orthogonal decompositions. The first condition is that cov(vt+1 −

µt+1, µt+1 − µt) = 0, i.e., that cov(ηt+1, µt+1 − µt) = 0. But ηt+1 is orthogonal on It+1,

which contains µt+1 and µt. The second condition is that cov(vt+1 − vt, vt − µt) = 0. But vt

has independent increments, so vt+1 − vt is independent of vt and anything contained in the

information set at time t. (This is true as long as the market does not get at t information

about the asset value at a future time.)

The total variance of the two orthogonal decompositions in (B2) must be the same, hence

Var(vt+1 − µt+1) + Var(µt+1 − µt) = Var(vt+1 − vt) + Var(vt − µt). But being stationary is

equivalent to Var(vt+1 − µt+1) = Var(vt − µt), which is then equivalent to Var(vt+1 − vt) =

Var(µt+1 − µt).
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